39 research outputs found

    ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    Get PDF
    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology

    Deintensification of Adjuvant Treatment After Transoral Surgery in Patients With Human Papillomavirus-Positive Oropharyngeal Cancer:The Conception of the PATHOS Study and Its Development

    Get PDF
    PATHOS is a phase II/III randomized controlled trial (RCT) of risk-stratified, reduced intensity adjuvant treatment in patients undergoing transoral surgery (TOS) for human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC). The study opened in the UK in October 2015 and, after successful recruitment into the phase II, transitioned into phase III in the autumn of 2018. PATHOS aims to establish whether the de-intensification of adjuvant treatment in patients with favorable prognosis HPV-positive OPSCC will confer improved swallowing outcomes, whilst maintaining high rates of cure. In this article, we will outline the rationale for the study and how it aims to answer fundamentally important questions about the safety, effectiveness and functional outcomes of minimally invasive TOS techniques followed by adjuvant radiotherapy (RT) or chemo-radiotherapy (CRT) in this patient population

    Machine-learned target volume delineation of 18F-FDG PET images after one cycle of induction chemotherapy

    Get PDF
    Biological tumour volume (GTVPET) delineation on 18F-FDG PET acquired during induction chemotherapy (ICT) is challenging due to the reduced metabolic uptake and volume of the GTVPET. Automatic segmentation algorithms applied to 18F-FDG PET (PET-AS) imaging have been used for GTVPET delineation on 18F-FDG PET imaging acquired before ICT. However, their role has not been investigated in 18F-FDG PET imaging acquired after ICT. In this study we investigate PET-AS techniques, including ATLAAS a machine learned method, for accurate delineation of the GTVPET after ICT. Twenty patients were enrolled onto a prospective phase I study (FiGaRO). PET/CT imaging was acquired at baseline and 3 weeks following 1 cycle of induction chemotherapy. The GTVPET was manually delineated by a nuclear medicine physician and clinical oncologist. The resulting GTVPET was used as the reference contour. The ATLAAS original statistical model was expanded to include images of reduced metabolic activity and the ATLAAS algorithm was re-trained on the new reference dataset. Estimated GTVPET contours were derived using sixteen PET-AS methods and compared to the GTVPET using the Dice Similarity Coefficient (DSC). The mean DSC for ATLAAS, 60% Peak Thresholding (PT60), Adaptive Thresholding (AT) and Watershed Thresholding (WT) was 0.72, 0.61, 0.63 and 0.60 respectively. The GTVPET generated by ATLAAS compared favourably with manually delineated volumes and in comparison, to other PET-AS methods, was more accurate for GTVPET delineation after ICT. ATLAAS would be a feasible method to reduce inter-observer variability in multi-centre trials

    Sensitivity of human papillomavirus-positive and -negative oropharyngeal cancer cell lines to ionizing irradiation

    Get PDF
    Human papillomavirus‑positive (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) has increased in incidence and has a much better prognosis than HPV‑negative (HPV‑) OPSCC with radiotherapy alone, but exactly why is unknown. The present study therefore aimed to further examine the sensitivity and possible changes in gene expression of several HPV+ and HPV‑ OPSCC, including various novel cell lines, upon ionizing irradiation (IR). Previously established HPV+ UM‑SCC‑47, UPCI‑SCC‑90, CU‑OP‑2, CU‑OP‑3 and HPV‑ UM‑SCC‑4, UM‑SCC‑6, UM‑SCC‑74a, UM‑SCC‑19 and newly established CU‑OP‑17 and CU‑OP‑20, characterised here, were subjected to 0‑6 Gy. Surviving fractions of each cell line were tested by clonogenic assays, and irregularities in cell cycle responses were examined by flow cytometry, while changes in gene expression were followed by mRNA sequencing. HPV+ OPSCC cell lines showed greater variation in sensitivity to ionizing irradiation (IR) and tended to be more sensitive than HPV‑ OPSCC cell lines. However, their IR sensitivity was not correlated to the proportion of cells in G2 arrest, and HPV‑ cell lines generally showed lower increases in G2 after IR. Upon IR with 2 Gy, mRNA sequencing revealed an increase in minor HPV integration sites in HPV+ cell lines, and some changes in gene expression in OPSCC cell lines, but not primarily those associated with DNA repair. To conclude, HPV+ OPSCC cell lines showed greater variation in their sensitivity to IR, with some that were radioresistant, but overall the HPV+ OPSCC group still tended to be more sensitive to IR than the HPV‑ OPSCC group. In addition, HPV+ OPSCC lines were more frequently in G2 as compared to HPV‑ cell lines, but the increase in G2 arrest upon IR in HPV+ OPSCC was not correlated to sensitivity to IR. Increases in minor HPV integration sites and changes in gene expression were also demonstrated after irradiation with 2 Gy

    Sensitivity to inhibition of DNA repair by Olaparib in novel oropharyngeal cancer cell lines infected with Human Papillomavirus

    Get PDF
    The incidence of Human Papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) is increasing rapidly in the UK. Patients with HPV-positive OPSCC generally show superior clinical responses relative to HPV-negative patients. We hypothesised that these superior responses could be associated with defective repair of DNA double strand breaks (DSB). The study aimed to determine whether defective DNA repair could be associated with sensitivity to inhibition of DNA repair using the PARP inhibitor Olaparib. Sensitivity to Olaparib, and induction and repair of DNA damage, were assessed in a panel of 8 OPSCC cell-lines, including 2 novel HPV-positive lines. Effects on cell cycle distribution and levels of PARP1 and p53 were quantified. RNA-sequencing was used to assess differences in activity of DNA repair pathways. Two HPV-positive OPSCC lines were sensitive to Olaparib at potentially therapeutic doses (0.1–0.5 μM). Two HPV-negative lines were sensitive at an intermediate dose. Four other lines, derived from HPV-positive and HPV-negative tumours, were resistant to PARP inhibition. Only one cell-line, UPCISCC90, showed results consistent with the original hypothesis i.e. that in HPV-positive cells, treatment with Olaparib would cause accumulation of DSB, resulting in cell cycle arrest. There was no evidence that HPV-positive tumours exhibit defective repair of DSB. However, the data suggest that a subset of OPSCC may be susceptible to PARP-inhibitor based therap

    Human papillomavirus (HPV) related Oropharynx Cancer in the United Kingdom – An evolution in the understanding of disease aetiology

    Get PDF
    A rising incidence of oropharyngeal squamous cell carcinoma (OPSCC) incidence has occurred throughout the developed world, where it has been attributed to an increasing impact of human papillomavirus (HPV) on disease etiology. This report presents the findings of a multicenter cross-sectional retrospective study aimed at determining the proportion of HPV-positive and HPV-negative OPSCC within the United Kingdom. Archival tumor tissue blocks from 1,602 patients previously diagnosed with OPSCC (2002-2011) were collated from 11 centers. HPV status was determined with three validated commercial tests to provide valid data for 1,474 cases in total. Corresponding national incidence data from the same decade were obtained from UK Cancer registries. The overall proportion of HPV+ OPSCC between 2002 and 2011 was 51.8% [95% confidence interval (CI), 49.3-54.4], and this remained unchanged throughout the decade [unadjusted RR = 1.00 (95% CI, 0.99-1.02)]. However, over the same period, the incidence of OPSCC in the broader UK population underwent a 2-fold increase [age-standardized rate 2002: 2.1 (95% CI, 1.9-2.2); 2011: 4.1 (95% CI, 4.0-4.3)]. Although the number of OPSCCs diagnosed within the United Kingdom from 2002 to 2011 nearly doubled, the proportion of HPV+ cases remained static at approximately 50%. Our results argue that the rapidly increasing incidence of OPSCC in the United Kingdom cannot be solely attributable to the influence of HPV. The parallel increase in HPV+ and HPV- cases we documented warrants further investigation, so that appropriate future prevention strategies for both types of disease can be implemented.</p
    corecore